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We present general results for one-dimensional systems of point charges (signed
point measures) on the line with a translation invariant distribution + for which
the variance of the total charge in an interval is uniformly bounded (instead of
increasing with the interval length). When the charges are restricted to multiples
of a common unit, and their average charge density does not vanish, then the
boundedness of the variance implies translation-symmetry breaking��in the
sense that there exists a function of the charge configuration that is nontrivially
periodic under translations��and hence that + is not ``mixing.'' Analogous
results are formulated also for one dimensional lattice systems under some con-
straints on the values of the charges at the lattice sites and their averages. The
general results apply to one-dimensional Coulomb systems, and to certain spin
chains, putting on common grounds different instances of symmetry breaking
encountered there.

KEY WORDS: bounded variance; one dimension particle systems; symmetry
breaking.

1. INTRODUCTION

To fluctuate is normal, and normally fluctuations grow like the square root
of the volume. There are however non-trivial exceptions to this rule; among
the notable examples are systems of charges with Coulomb interaction and
certain quantum spin chains in their ground states. Curiously, the known
one-dimensional systems with uniformly bounded fluctuations in the total
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charge or component of spin in an interval exhibit also other exceptional
properties, such as translation symmetry breaking (in jellium and quantum
spin chains), or non-uniqueness of the Gibbs state (in the two-component
neutral Coulomb system). We prove here that this is not accidental: under
some general assumptions, bounded fluctuations in a one-dimensional
particle system imply the existence there of a periodic, or in the lattice case
a quasi-periodic, structure. In particular, in such systems the correlations of
certain local variables do not decay.

We briefly describe the examples mentioned above to which our
results apply.

(a) Coulomb systems: In general terms, a Coulomb system consists of
several (m) species of particles with charges q: , :=1,..., m. For a classical
system containing N: particles of species : in a finite domain V/Rd, the
(configurational) Gibbs canonical distribution is the probability measure
on the space of configurations [(xj , :j )] j=1,..., N , xj # V, :j=1,..., m, and
N=�m

:=1 N: , given by the density exp[&;U([(xj , : j )])]�Z, with

U([(xj , :j )])

= :
i{ j

qj qi VC(xi&x j )+:
j

qj Vbg(x j )+:
i, j

V (:i , :j)
sr (xi&xj ) (1.1)

where qj #q:j
, VC(x) is the Coulomb potential, satisfying 2VC(x)= &$(x),

Vbg(x) is the potential induced by a (uniform) background charge, of
charge density \bg , and V (:, :$)

sr (x) is a short range interaction between par-
ticles of species : and :$. For quantum systems the measure on the space
of configurations is given by a more complicated formula; for details, we
refer the reader to the recent review article by Brydges and Martin.(1)

Under suitable conditions, such measures, with [qj ] and \bg not all of
the same sign, admit translation invariant infinite volume limits. In the
limiting states the total charge density, including the background, is zero,
i.e., the particle densities &: satisfy �: q: &:+\bg=0.(1�3) It is further expected,
and proven in some cases, including all classical one-dimensional Coulomb
systems, (2, 4) that with respect to these limiting measures the variance of
the net charge in a region 4 increases with 4 only like its surface area.(5, 6)

That is,

Var(Q4) :=(Q2
4)&(Q4) 2

t |�4| (as 4ZRd ) (1.2)

where Q4=�xi # 4 q:i
. In one dimension this corresponds to the statement

that the variance of the charge in an interval I remains bounded as
|I | � �. Analogous statements apply to the case where the charges are
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restricted to lattice sites.(7) (Eq. (1.2) follows from the ``zero sum rule,''
which holds whenever the charge correlations have sufficiently rapid
decay).(1, 5)

A simple example of a Coulomb system is the so-called jellium model,
or the one-component plasma (OCP), with particles of unit charge dispersed
in a negatively charged uniform background. For this system surface
growth of charge fluctuations, which now correspond to particle-number
fluctuations, has been established in d=1 for all temperatures(2, 4) and in
d�2 at high temperatures (;<<1).4

For the one-dimensional jellium (with the 1D Coulomb potential
VC(x)=&1

2 |x| ) it is also known that the limits of the Gibbs measures
exhibit ``translation-symmetry breaking''(8, 9, 4, 10). The periodic structure
found there has been regarded as an example of the ``Wigner lattice.''
However, in this case the symmetry breaking was also understood to be
related to the boundedness of the charge fluctuations, the two being con-
nected through the properties of the electric field(4) (for which the existence
of the limit was previously established in ref. 2). Here we show that this
relation is an example of a more general phenomenon.

(b) Spin chains: Another example of a one-dimensional system with
reduced fluctuations is provided by the ground state of certain quantum
spin systems. These consist of ``chains'' (also of interest are arrangements
into ``ladders'') of quantum spins [_

� n]n # Z , of a common spin S, such that
2S is an integer, with the Hamiltonian

H=& :
n # Z

P (0)
n, n+1 (1.3)

where P (0)
n, n+1 is the projection onto the singlet state, i.e., on the subspace

in which (_
� n+_

� n+1)2=0. This class of Hamiltonians was introduced by
Affleck(13) as an interesting extension of the spin 1�2 Heisenberg antiferro-
magnetic spin chain. (It is also related to the classical Potts antiferro-
magnet with Q=2S+1).(14)

The ``z-components'' of the spins, [_ (3)
n ], form a family of commuting

observables. Thus in any quantum state their joint distribution may be
described by a ``classical'' probability measure on the space of configura-
tions of one-component spin variables with values ranging over [&S,
&S+1,..., S]. To distinguish these from the full quantum spin variables let
us refer to their values as ``charges.'' For these systems the ground state
( |0) ) admits a representation in which the charges are organized into
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neutral clusters, (14) i.e., randomly organized clusters of sites for which
� _(3)=0, with relative spin flip symmetry between different clusters. The
clusters can intermingle, so this perspective can be of value only when the
distribution of these clusters is such that for any interval I, the number of
sites in I belonging to clusters which are not entirely contained in the given
interval is seldom large��in a sense uniform in I. A condition implying that
this scenario is realized is rapid decay of correlations:

:
n>0

n |(0| _ (3)
0 _ (3)

n |0) |<� (1.4)

One can show, using the cluster representation, that when Eq. (1.4) holds
the two point function satisfies the neutrality condition �x (0| _ (3)

0 _ (3)
x |0)

=0, which is analogous to the ``zero sum rule'' of Coulomb systems, (1, 5, 6)

and the block spins SI=�n # I _ (3)
n have uniformly bounded variance, with

|(0| |SI | 2 |0) |�2 :
n>0

n |(0| _ (3)
0 _ (3)

n |0) | (1.5)

The validity of the condition (1.4) depends on S; exact calculations indicate
that (1.4) is satisfied for all S�1, but not for S=1�2.(13, 15, 16)

In ref. 14 it was shown, using the aforementioned cluster representa-
tion, that for ``half-integer'' spins (with 2S an odd integer greater than one)
condition (1.4) implies, in addition to the bound on block spin fluctua-
tions, also that the translation invariant infinite volume ground state
decomposes into a mixture of two states of period 2. The symmetry break-
ing which occurs in the above spin systems is akin to dimerization, though
the neutral clusters need not consist just of pairs of neighboring spins.
(A notable fact is that the lack of mixing in the ground state is expressed
through other correlators than the two-point correlation function, since the
spin-spin correlation does decay to zero.)

The general results presented here place this translation symmetry
breaking within a broader context, as we show that it is not coincidental
that the same condition (1.4) implies, for the quantum spin chains with odd
values of 2S, both bounded variance of the block spins and translation
symmetry breaking.

2. FORMULATION AND RESULTS

Our main results relate reduced fluctuations to translation symmetry
breaking. A more precise formulation of the conclusion is that the state,
given by a translation invariant measure + on the space of configurations,
has a cyclic factor. Let us first introduce the relevant terminology.
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2.1. Cyclic Factors and Symmetry Breaking

Definition 2.1. A system described by a probability measure +(d|),
on a space 0 [here, the space of charge configurations], which is invariant
under either the continuous group of translations (shifts Tx by x # R) or
the group of lattice shifts (x # Z) is said to have a cyclic factor, of period
0<*<�, if there is a measurable function ,(|) with values in [0, 2?) that
evolves under the shifts by

,(Tx|)=,(|)&2?x�* (mod 2?), for a.e. | (2.1)

with, in the lattice case, *&1 � Z.

An equivalent formulation is that the measure + can be decomposed
into a mixture:

+( } )=|
2?

0

d%
2?

+% ( } ) (2.2)

of mutually singular measures which are cycled under the shift Tx :

Tx+%=+(%&2?x�*)(mod 2?)
, d%-a.s. (2.3)

In the lattice case, if * is rational then d%�2? in (2.2) [and in (2.3)] should
be replaced by, or understood as, a probability measure &(d%) invariant
under % [ %&2?�* (mod 2?).

The two formulations are related by the observation that in the
decomposition (2.2) the cyclic component +% ( } ) is supported by configura-
tions | with ,(|)=%.

If the invariance is under the continuous group of translations, the
existence of a cyclic factor implies that the measure + is not ergodic under
the smaller group of shifts by *. For lattice systems, which are invariant
only under shifts by multiples of the lattice period, if * is incommensurate
with the period (here 1) then each of the lattice shifts may still act ergodi-
cally on + and the translation symmetry breaking is expressed only through
the existence of a quasi-periodic structure; if the two lengths are commen-
surate then there is loss of ergodicity under shifts by some multiple of *.

Nevertheless, in either the continuum or the lattice cases, the existence
of a cyclic factor implies that + does not have good clustering properties.
In particular, the mixing condition, which implies that for any bounded
function g(|) with expectation � g d+=0

| gTx g d+ � 0, as |x| � � (2.4)

is not satisfied.
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Let us note also that it follows from (2.1) that ,(|) is a tail function
(under translations), in fact measurable with respect to the _-algebra at
+� (or &�). Thus, if + is a Gibbs state for some potential, or weakly
Gibbs, (18) then its cyclic components should also be Gibbs states, in the
appropriate sense, for that potential.

2.2. Results

Our first result concerns systems of particles in the continuum. The
two cases of primary interest to us are: (i) point processes, described by
measures on the space of locally finite particle configurations on the line R,
and (ii) point-charge processes on R. A process of either type may be
described in terms of a random atomic measure on R for which the collec-
tion of atoms (the locations of the points or the charges) is (a.s.) locally
finite. In the former case the measure, which will be denoted by N|(I ), is
the number of particles in the interval I; in the latter case the measure is
the sum of the point charges in I, Q|(I )=�xi # I q:i

, in the notation of
Example 1.a.

Theorem 2.1. Let +(d|) be a translation invariant probability
measure describing a point process on R. If the variance of the number of
points in an interval I (i.e., of the random variable NI (|)#N|(I)) is
bounded uniformly in the size of the interval

E([NI&E(NI)]2)�C(<�) (2.5)

then + has a cyclic factor, of period

*=1�E(N[0, 1]) (2.6)

More generally, let + describe a translation invariant point-charge
process on the line, with the charge values restricted to multiples of a
common unit e. Assume that for some \{0 the family of random variables
[F|(a, b)], defined by

F|(a, b)=Q|((a, b])&\(b&a) (2.7)

where &�<a<b<� and Q|(I ) is the total charge in the interval I, is
tight. Then the measure + has a cyclic factor, of period

*=e�\ (2.8)
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The tightness of the family of random variables [F|(a, b)]a, b means
that the probabilities of large fluctuations have asymptotically vanishing
bounds that are uniform in a, b # R:

Prob( |F|(a, b)|�t)�p(t) (2.9)

with p(t)z0 as t � �. A sufficient condition for this is that the variances
of QI are uniformly bounded, as in (2.5).

The quantity \ introduced in Theorem 2.1 is the asymptotic mean of
the charge density. Under the tightness condition formulated above it is
well defined even if E( |Q|(I )|=�. Note also that ergodicity is not
assumed in Theorem 2.1.

Our second result deals with systems of charges [qk]k # Z on the one-
dimensional lattice Z. Here, for any interval I/Z, the charge in I is given
by Q|(I )=�k # I qk , with qk the charge variable at the lattice site k # Z.

Theorem 2.2. Let + describe a translation invariant system of
charges on the lattice Z with the following properties:

(a) The charges (qk) are restricted to values of the form (#+ne) with
# and e fixed, and n taking only integer values.

(b) For some \ # R the family of random variables [F|(a, b)#
Q|((a, b])&\(b&a)], with a, b # Z and a<b, is tight.

(c) Furthermore,

\&#{0 (mod e) (2.10)

Then the measure + has a cyclic factor, of period

*=e�: (2.11)

with : defined by

: # [0, e), :=\&# (mod e) (2.12)

Before we turn to the proof, let us note that the conditions (a) and (c)
are satisfied in the following examples:

Ex. 1. The charges are integer multiples of a common unit e, with
the mean density \ not an integer multiple of e. (This is the most obvious
case, with #=0.)
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Ex. 2. Lattice systems of odd integer charges with the mean \ not
equal to an odd integer. (To cover this case, choose e=2 and #=1.)

Ex. 3. Lattice systems of charges \1 (zero not allowed) which
fluctuate, i.e., the qk are neither identically &1 nor identically 1. (This is a
special case of (2), of relevance to the spin models mentioned in the intro-
duction. Note that in this situation there is no need to add a separate
restriction on \.)

The last example is intended also to show that there is some room for
maneuver in applying Theorem 2.2. If one regards the charge values \1 as
integers, with #=0 and e=1, then condition c requires that \{0. How-
ever, if one presents the two values as 1+2n (with #=1 and e=2), then
the restriction on \ is \{1 (mod 2), but this is automatically satisfied if
the charges fluctuate.

2.3. Remarks

It is natural to explore by how much one can weaken the conditions
which imply translation symmetry breaking. Following are some remarks
concerning such questions, (1, 4) and other matters.

(1) The condition that \{0, in the general part of Theorem 2.1, and
the condition (c), Eq. (2.10), in Theorem 2.2, are needed there. A relevant
example is the one-dimensional two-component Coulomb system with
charges \e, of equal densities. This system, in any of its 3 states, has
bounded charge fluctuations but it is also mixing under translations(2, 4, 17)

and thus has no cyclic factor (the correlations of all bounded local func-
tions decay there exponentially rapidly). A discrete version of this example
is obtained by partitioning this system into lattice cells. The state of this
lattice model is mixing, as in the continuum model. The model satisfies
conditions (a) and (b), but not (c)��since \=#=0 for this model.

(2) The discreteness of the matter or the charge configurations is
crucial��without this condition it is trivial to construct measures on field
configurations X|(x) in d=1 with bounded fluctuations and arbitrarily
good mixing behavior. To do so, one may start from a random field with
strong clustering properties whose configurations u|(x) are differentiable
functions, and take X|(x) :=du| �dx.

(3) The boundedness of the fluctuations cannot be relaxed much
beyond the tightness condition. For the spin chain with S=1�2, i.e., the
Heisenberg antiferromagnet, there is no translation symmetry breaking
even though the growth of the variance of the block spins is subnormal,
increasing only logarithmically with the block length. The same appears to
be true for a system of point particles on a line with logarithmic interac-
tions, and it can be verified by explicit calculation at special values of ;,
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e.g., ;=2��for which the points correspond to the eigenvalues of a random
Hermitian matrix sampled from the Gaussian ensemble and suitably scaled
(the Dyson distribution).(19)

(4) We do not see straightforward extensions of our results to higher
dimension. It would be natural to guess that the proper extension of the
boundedness of the variance in particle number, in one dimension, might
be that the variance is of the order of the surface area. In fact, J. Beck(20)

proved that the variance in the particle number in a ball of radius r,
averaged over r uniformly distributed in an interval (0, R), must grow at
least like Rd&1, and such a rate is realized in some cases of the OCP.
However, examples of the OCP in d�2 dimensions show that surface-rate
fluctuations are compatible with good mixing properties. More explicitly,
the OCP in d�2 dimensions, placed in a cube of side L with periodic
boundary conditions, will, for small reciprocal temperatures ; and small
densities \, have a limit as L � � which is translation and rotation
invariant with good decay of correlations(12, 1) and with the particle
numbers having variance of the order of the surface. (The OCP correla-
tions can in fact be computed explicitly for d=2 at ;=2 and arbitrary
densities \: the truncated correlations of n particles are then found to decay
like exp[&:D2], where D is the distance between two subsets of the
particle configuration, maximized over the partitions into two parts.)(21, 11)

(5) While in the introduction we focused on non-trivial examples of
translation invariant particle measures in d=1 with bounded fluctuations,
one should note that there are also many trivial ones. Just take the points
of the integer lattice and rigidly shift them randomly over a unit interval
with uniform weight. Or, after shifting, place each particle with uniform
density inside an interval of unit length centered on the shifted lattice
points. In the first example the periodic structure is clearly visible: the
configurations are periodic. It is less obvious, but still not difficult to see,
that also in the second example there is a nontrivial periodic structure,
though in this case the particle configurations are not themselves periodic.
(We remark, as an aside, that the variance on the left side of (2.5) is
minimized, for each I, by the shifted integer lattice.)

(6) In view of the interest in the ``Gibbs state'' condition;(22, 18) let us
note that it follows from our results that the measures satisfying the
conditions of our Theorems 2.1 and 2.2 do not admit representation as
Gibbs states with potentials for which the interaction across a boundary is
bounded. The reason is that in one dimension this boundedness condition
implies uniqueness of the Gibbs measure, which excludes the possibility of
cyclic decomposition.(23)
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3. DERIVATION

The proof of the results in Section 2 rests on two separate observa-
tions. The first is that, under the tightness condition, the configuration of
the charges, centered by the subtraction of its asymptotic mean \, is the
distributional derivative of a process, E|(x), which is a covariant functional
of the charge configuration. In the second step we make essential use of the
atomic character of the point-charge process, and in particular of the
charge constraints, to conclude the existence of a cyclic factor, with cyclic
function ,(|) of Definition 2.1 given by a suitable fractional part of
E|(0)=E(|), namely the function ,(|) with values in [0, 2?) such that

,(|)=2?E(|)�e (mod 2?) (3.1)

The terms used above are defined as follows. A process E|(x) is said
to be a covariant functional of | (in the sense of behaving covariantly
under translations) if it satisfies:

E|(x)=ETx|(0) (3.2)

(equivalently: E|(x+a)=ETx|(a)), in which case it is determined by the
function

E(|)#E|(0) (3.3)

This stationary process is the antiderivative (or, the ``primitive'') of the
charge distribution, ``centered'' in the sense described above, if

Q|((a, b])&\(b&a)=E|(b)&E|(a) (3.4)

More generally, let | now be any stationary random locally finite
signed measure on R, and write F|(a, b) for |((a, b]). Let X|(x) be its
(possibly generalized) ``charge'' density field, defined through its (possibly
formal) integrals over intervals �b

a X|(x) dx=F|(a, b). We shall refer to
such an X|(x) as a stationary locally (weakly) integrable process on R. We
say that a covariant functional E|(x) is the antiderivative of X|(x), and
that X|(x) is the derivative of E|(x), if

F|(a, b)=E|(b)&E|(a) (3.5)

Note that if a stationary locally integrable process X|(x) is the
derivative of a covariant functional E|(x), then its integrals over intervals
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F|(a, b), &�<a<b<�, form a tight family of random variables. Of key
importance to us is that the converse is also true. This fact��as we learned
from Y. Peres after informing him of our derivation��is related to an estab-
lished result in ergodic theory, expressed there as a relation between tight
cocycles and coboundaries (see below). In this part of the argument the
discreteness of the charges does not play any role, and the statement which
we need can be formulated as follows.

Theorem 3.1. A stationary locally integrable process X|(x), on R,
is the derivative of a stationary process E|(x) given by a covariant
functional if and only if its integrals over intervals

F|(a, b)=|
b

a
X|(x) dx (3.6)

with &�<a<b<�, form a tight family of random variables.

Let us note that it follows from the theorem that if a process X|(x)
has any stationary antiderivative Y|~ (x) at all��possibly defined only on an
extension of the original probability space and thus not determined by X|

��it must also have a stationary covariant antiderivative E|(x), since the
integrals of X| over intervals then obviously form a tight family. It is also
worth stressing that the stationary antiderivative of X|(x), whose existence
is guaranteed by Theorem 3.1 when the tightness condition is satisfied, is
completely determined, in a translation invariant manner, by the X-process
alone.

For one-dimensional Coulomb systems, the antiderivative of the charge
configuration (centered by the subtraction of the asymptotic mean \) is,
up to an overall shift by a constant, the electric field. While its meaning
is clear for finite systems, its existence as a well-defined, and covariant,
function of the charge configuration is not immediately obvious for an
infinite system.(4)

To be more explicit, let us add that if the variables [F|(a, b)] are not
only tight but also L1-bounded, satisfying

E( |F(a, b)| )�K (3.7)

with K<� independent of a and b, then the stationary antiderivative can
be chosen as:

E|(x)=E& lim
t � � |

t

0 \1&
s
t+ X|(s+x) ds (3.8)
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where the integral is guaranteed to converge almost surely through an
application of the ergodic theorem to the process E|(x) (see the first
remark after the proof of Theorem 3.1; see also ref. 4), and the constant E
is the mean value, E(E|(x))=E. (If E|(x) is regarded, as it is in this paper,
merely as giving a covariant antiderivative of X|(x), then the value of the
constant E in Eq. (3.8) is of course arbitrary. However, this term is essen-
tial in any situation where E|(x) has significance in its own right, as it does
for Coulomb systems. In particular, it plays an important role in the
analysis of the 3-states mentioned in Section 4.2)

3.1. Existence of Stationary Anti-Derivatives

A natural context for Theorem 3.1 is the theory of cocycles, which has
been developed within ergodic theory. For a measure preserving transfor-
mation T: 0 � 0, a cocycle is a sequence of functions F0(|), F1(|),...
(| # 0) of the form

Fn(|)=F0(|)+ :
n&1

j=0

f (T j|) (3.9)

The cocycle is coboundary if f ( } ) is of the form:

f (|)= g(T|)& g(|) (3.10)

In the latter case the cocycle is tight, as a sequence of random variables,
since then

Fn(|)&F0(|)= g(T n|)& g(|) (3.11)

The converse, derived by Schmidt, (24) is also true:

Theorem 3.2 (ref. 24). Any tight cocycle is a coboundary.

As mentioned above, we owe the reference to Y. Peres. The L2 version
of the result is a yet older result of Leonov;(25) a recent generalization is
found in ref. 26.

Theorem 3.1 is a continuum analog of Theorem 3.2, from which it can
be easily derived. However, for the completeness of presentation we shall
sketch a direct proof.

Proof of Theorem 3.1. Given that the argument is not that different
from the derivation of Theorem 3.2, we permit ourselves to present here
just a brief summary.
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We start by introducing a convenient extension of the space 0 over
which the random process X|(x) is defined. Let 0� =0_R and let +~ (d|~ )
be a probability measure on 0� having 0-marginal +. Writing the points in
0� as |~ =(|, Y), we extend the translations Tx , originally defined on 0,
into a flow on 0� by:

T� x(|, Y)=(Tx|, Y+F|(0, x)) (3.12)

Notice that on the enlarged space the covariant functional defined by

Y|~ (x)#Y(T� x|~ ) (3.13)

with Y(|~ ) the second coordinate of |~ , provides an antiderivative of X|(x),
since

Y|~ (x)&Y|~ (0)=F|(0, x) (3.14)

Moreover, if +~ (d|~ ) is stationary under the flow T� x , then the random field
Y|~ (x), on the probability space [0� , +~ ], is stationary under T� x . This field,
however, need not yet provide us with the covariant functional E|(x) of
Theorem 3.1, since it may depend not only of | but also on the entire |~ .

The proof of Theorem 3.1 is in two steps. First, it is established that
there indeed exists a probability measure +~ (d|~ ) on 0� such that: (i) the 0
marginal of +~ is +(d|), and (ii) +~ is stationary under T� x . Then, using the
stationarity��which permits the application of the ergodic theorem��we
construct a modified field on 0� which depends only on the first coordinate, |.
It is this field which yields the desired E|(x).

To prove the first claim, we let &L(d|~ ) be the probability measure for
which | has the distribution +(d|) and the conditional distribution of Y,
given |, is that of the random variable Y=F|(&u, 0) with u sampled over
[0, L] with the uniform probability distribution (du�L). It is easy to see
that &L( } )=(1�L) �L

0 T� u&0du, where &0=+_$0 , is close to being invariant
under T� x , with the variational distance between T� x&L( } ) and &L( } ) bounded
by 2x�L.

It is also easy to see that the distribution of Y under the measures
&L( } ) is tight:

Prob&L
( |Y |�t)=

1
L |

L

0
Prob+( |F|(&u, 0)|�t) du

�sup
u>0

Prob+( |F|(&u, 0)|�t) (3.15)

Under the tightness assumption of Theorem 3.1, the right hand side
vanishes as t � �.
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The above considerations suggest that compactness and continuity
arguments can be invoked to prove that the sequence of probability
measures &L( } ) has a convergent subsequence, as L � �, and that the
limiting measure is strictly stationary under the flow T� . The existence of a
suitable limiting measure can indeed be proven using a topology which is
natural for | in the present set-up (it is at this point that we leave the
argument at the level of a sketch), for which Eq. (3.15) implies that the
sequence of measures &L( } ) is tight, and thus has a convergent subsequence,
with limit +~ .

Clearly the 0-marginal of +~ is +. That +~ is also stationary would be
immediate were T� x continuous on 0� . However, there is here a slight com-
plication in that the second component on the right-hand-side of Eq. (3.12)
is not continuous in |. Nevertheless, the set of configurations | for which
T� x|~ is discontinuous��those configurations having atoms at 0 or at x��has
+-measure 0, (an easy consequence of the stationarity of +). Using this fact,
the conclusion of stationarity follows.

The above implies that in the larger space 0� , the process X|(x) has a
stationary antiderivative Y|~ (x). While the antiderivative thus obtained
need not be determined by | alone, its stationarity implies that it has the
necessary asymptotic statistical regularity to yield an antiderivative of the
field X| which is a covariant function of | alone. This can be done by
selecting from among the one-parameter family of possible antiderivatives
(differing only by an overall shift) the one whose median value, averaged
along the positive x-axis, is set at Y=0.

The median level for Y( } ) is defined by

M[Y ]=inf
M {M : lim

L � �

1
L |

L

0
I[Y(x)�M] dx�1�2= (3.16)

provided the limit exists. (The symbol I[ } ] represents the indicator
function.) For Y|~ ( } ), which is sampled with a stationary distribution, the
existence of the limit (simultaneously for a countable collection of M)
follows by the ergodic theorem. Using the median, we define

E|~ (x)=Y|~ (x)&M[Y|~ ] (3.17)

Because M[Y+Const.]=M[Y ]+Const., E|~ depends only on | (and not
on the other coordinate of |~ ), and thus it defines a suitable covariant
antiderivative of X|(x).

Remarks. 1. Under the additional assumption that Eq. (3.7)
holds, the stationary antiderivative Y|~ constructed in the first step of the
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argument above satisfies E[Y|~ (0)]<�, as may easily be seen from the
construction of +~ . One may then alternatively define an antiderivative func-
tional E using the average Y� of Y, Y� =limL � � (1�L) �L

0 Y(x) dx, in place
of the median M[Y ]. Moreover, for this antiderivative we may obtain an
explicit formula: Averaging the expression E|(0)&E|(u)=&F|(0, u) with
respect to du�L over the interval (0, L] and taking the limit L � �, using
the fact that, by construction, limL � � (1�L) �L

0 E|(u) du=0, one arrives, in
fact, at the formula given by Eq. (3.8) (see ref. 4 for further discussion of
Eq. (3.8)).

2. In the case of the spin models discussed in the introduction
(example b), the antiderivative Y|(x) corresponds to the total ``charge'' to
the left of x in those clusters which are split by x.

3. Suppose X|(x) is ergodic. Then it is easy to see��either by using
the covariant antiderivative of Theorem 3.1 or directly��that a stationary
antiderivative Y|~ (x) of X|(x) is a covariant functional of | alone if and
only if Y|~ (x) is ergodic. Moreover, two ergodic antiderivatives of X|(x)
differ by an absolute constant. Thus if X|(x) is ergodic, instead of proceeding
to step 2 as described above, we could obtain a covariant antiderivative E

by simply decomposing +~ , corresponding to the antiderivative Y|~ (x) from
step 1, into its ergodic components and choosing any one of these.
Moreover, using the ergodic theorem, it follows from the manner of con-
struction of &L that the process Y|~ (x) from step 1 is a mixture of the
antiderivatives E(x)& y with weights +E(0)(dy), i.e., with y random, with
distribution that of E(0). In particular, the distribution of Y|~ (0) is that of
the difference of two independent copies of E(0). Note also that it follows
that all limits of &L , L � �, must agree, independent of which convergent
subsequence is chosen, so that in fact limL � � &L itself exists, without
passage to a subsequence.

3.2. Proof of the Main Results

Proof of Theorem 2.1. It suffices to consider the point-charge
processes, since any point process may be regarded as a special case with
unit charges. Under the assumption of tight fluctuations, Theorem 3.1 says
that there is a measurable function E(|) of the charge configuration such
that

E(Tx |)=E(|)+Q|((0, x])&\x (3.18)

Since the charge Q|((0, x]) assumes only values which are integer multi-
ples of e, we may conclude that ,(|)#(2?�e) E(|) (mod 2?) defines a
cyclic factor as described in Theorem 2.1 and Definition 2.1.
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Proof of Theorem 2.2. The argument in the discrete case is similar
to the above, with the only notable difference being that the charge
Q|((0, q]) now includes #x in addition to an integer multiple of e. Thus
in this case the ``antiderivative functional'' E(|)= g(T|) provided by
Theorem 3.2 satisfies

E(Tx|)=E(|)+(#&\) x (mod e) (3.19)

and hence ,(|)#(2?�e) E(|) (mod 2?) defines a cyclic factor as described
in Theorem 2.2 and Definition 2.1. K

4. EXTENSIONS

4.1. Jellium Tubes

Our discussion of one-dimensional systems applies also to elongated
tubes which are locally of higher dimension, but are of finite cross section
and infinite in one direction. An example of such a system is the three
dimensional OCP with the flux lines of the three dimensional field restricted
to stay in the tube. (This is an idealized situation, possibly mimicking some
high contrast dielectric materials, or a Kalutza�Klein model with only one
unconfined dimension.) If the variances of the total charge in tubes of
length L stays bounded, as may be expected under the Coulomb interac-
tions, then the theory presented here implies translation symmetry break-
ing, along the unconfined direction. In such a situation the projections of
the positions of the point charges along the free direction yield a one
dimensional system of the type discussed in this paper. For d=2 this
system is considered in ref. 21 for the explicitly solvable case ;=2.

4.2. 3-States of One-Dimensional Coulomb Gas

Unlike the OCP the one-dimensional Coulomb gas consisting of a
continuum system of point charges of value \e, with respective densities
\+=\& , does not break translation symmetry, see Remark 1 of Section 2.3.
This system does however exhibit another form of non-uniqueness of the
Gibbs state: it admits a one-parameter family of infinite-volume translation
invariant Gibbs states, indexed by the fractional part (3) of the boundary
charge ``imposed at infinity''(4, 17). While at first glance this ``anomaly''
appears to be of a different kind than what is discussed here, let us point
out that it can also be viewed as a remnant of the translation symmetry
breaking in asymmetric charge systems.

The charge-symmetric model may be arrived at as a limit of Coulomb
systems with a uniform background of small charge density \bg=&=, and
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\+=\&+=. In this situation our results do apply, and prove that the
system exhibits translation symmetry breaking, the corresponding infinite
volume Gibbs states having a cyclic factor of period *=1�=. For each = the
resulting cyclic components + (=)

% (of Eq. (2.2)) are periodic under transla-
tions, with period 1�=. Moreover, the dependence of + (=)

% on % can be so
chosen that when the asymmetry parameter = is taken down to zero, these
converge (locally) to a one-parameter family of translation invariant states
(i.e., probability measures on the space of configurations) which form the
3-states of the symmetric Coulomb gas. The proof can be obtained using
the methods of ref. 4.
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